打开App
封面图
360P
打开西瓜视频,看完整高清内容
轻松简单学数学头像
轻松简单学数学
1.3万粉丝1112视频
关注

只要约束条件求最大值的方向有界,就可以求线性目标函数的最大值

原创446次播放2024-05-12发布

初中各种类型数学题解题分析
309/455

初中数学竞赛难题,只要你懂得线性规划原理,解题也简单App03:46
初中数学竞赛难题,只要你懂得线性规划原理,解题也简单
只要约束条件求最大值的方向有界,就可以求线性目标函数的最大值App03:19
播放中
只要约束条件求最大值的方向有界,就可以求线性目标函数的最大值
求两个根式和的最大值,用线性规划原理解题,用柯西不等式秒解App03:49
求两个根式和的最大值,用线性规划原理解题,用柯西不等式秒解
安徽省数学竞赛题,用解方程的方法求正整数解App02:05
安徽省数学竞赛题,用解方程的方法求正整数解
求线性目标函数的最值,用线性规划原理解题非常方便App02:58
求线性目标函数的最值,用线性规划原理解题非常方便
西安市中考题,典型的几何方法求最值题,用将军饮马概念求最小值App02:41
西安市中考题,典型的几何方法求最值题,用将军饮马概念求最小值
北京人大附中招生考试题,看起来难其实简单,要熟悉完全平方公式App02:15
北京人大附中招生考试题,看起来难其实简单,要熟悉完全平方公式
代数竞赛题,已知指数方程求指数式的值,熟练掌握指数运算法则App02:05
代数竞赛题,已知指数方程求指数式的值,熟练掌握指数运算法则
西安市中考题,可以用几何方法做,也可以用线性规划原理解题App04:10
西安市中考题,可以用几何方法做,也可以用线性规划原理解题
高中数学必刷题初中生也能做,用根的判别式求值域App02:50
高中数学必刷题初中生也能做,用根的判别式求值域
高中数学必刷题,求值域就是求最值,用类似线性规划原理解题App03:39
高中数学必刷题,求值域就是求最值,用类似线性规划原理解题
用十字相乘法分解因式,记住这种用法,两个因式之和等于中间项App02:45
用十字相乘法分解因式,记住这种用法,两个因式之和等于中间项
只要你二次函数学得好,求最值难题也简单,用根的判别式解题App05:35
只要你二次函数学得好,求最值难题也简单,用根的判别式解题
初中数学竞赛常考题型,已知两个方程求值,题目不难运算有技巧App03:08
初中数学竞赛常考题型,已知两个方程求值,题目不难运算有技巧
初中数学解方程求值技巧,直接利用方程降次求值App02:31
初中数学解方程求值技巧,直接利用方程降次求值
未知数与它的倒数之和为定值,代数式求值的技巧App02:12
未知数与它的倒数之和为定值,代数式求值的技巧
变量约束条件为直线,求球体半径的最小值,用几何概念理解App05:21
变量约束条件为直线,求球体半径的最小值,用几何概念理解
解高次方程用观察法和待定系数法,待定系数法选取因数的技巧App04:39
解高次方程用观察法和待定系数法,待定系数法选取因数的技巧
先用变量替换解题,再用整数奇偶运算规律得到结果App02:16
先用变量替换解题,再用整数奇偶运算规律得到结果
初中指数运算求值题,分析方法和解题过程,掌握指数运算法则App02:31
初中指数运算求值题,分析方法和解题过程,掌握指数运算法则
怎样根据嵌套函数求值,需要有特殊条件才能求值App02:11
怎样根据嵌套函数求值,需要有特殊条件才能求值
a、b、c为自然数时,怎样根据根式方程求值App01:47
a、b、c为自然数时,怎样根据根式方程求值
数学竞赛题解方程,观察法和待定系数法无效,用平方差公式App02:04
数学竞赛题解方程,观察法和待定系数法无效,用平方差公式
因式分解题的三种解法,求根公式法、待定系数法、平方差公式法App05:00
因式分解题的三种解法,求根公式法、待定系数法、平方差公式法
一个整式是完全平方数,怎样求整数c的值,有固定的解法App02:31
一个整式是完全平方数,怎样求整数c的值,有固定的解法
八年级考试题,怎样根据方程求值,求值的两个技巧App02:42
八年级考试题,怎样根据方程求值,求值的两个技巧
初中数学竞赛题,解有根式的方程,也可以用观察法降次App01:38
初中数学竞赛题,解有根式的方程,也可以用观察法降次
日本数学竞赛题,把根式方程化为高次方程,用观察法和待定系数法App03:17
日本数学竞赛题,把根式方程化为高次方程,用观察法和待定系数法
根式方程的特殊解法,利用函数的奇偶性和单调性解方程App02:09
根式方程的特殊解法,利用函数的奇偶性和单调性解方程
江苏省初中数学竞赛题,解根式方程可以化为解高次方程App03:54
江苏省初中数学竞赛题,解根式方程可以化为解高次方程
解方程之前,考虑一下变量的取值范围,避免不必要的出错App02:02
解方程之前,考虑一下变量的取值范围,避免不必要的出错
相关推荐
评论 0